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We propose a basic mechanism for isochronal synchrony and communication with mutually delay-coupled
chaotic systems. We show that two Ikeda ring oscillators, mutually coupled with a propagation delay, synchro-
nize isochronally when both are symmetrically driven by a third Ikeda oscillator. This synchronous operation,
unstable in the two delay-coupled oscillators alone, facilitates simultaneous, bidirectional communication of
messages with chaotic carrier wave forms. This approach to combine both bidirectional and unidirectional
coupling represents an application of generalized synchronization using a mediating drive signal for a spatially
distributed and internally synchronized multicomponent system.
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A particularly striking realization in the dynamics of
coupled oscillators is that even systems displaying chaotic
wave forms will synchronize when appropriately coupled
�1,2�. Chaos synchronization has attracted widespread re-
search interest from both scientists and engineers by provid-
ing insights into natural phenomena and motivation for prac-
tical applications in communications and control �3–5�.
Recently, high-speed, long-distance transmission of mes-
sages using synchronized chaotic lasers was demonstrated in
a commercial fiber-optic network �6�.

Traditionally, coupling schemes between nonlinear oscil-
lators have been classified as either unidirectional or bidirec-
tional. In Refs. �1,2�, Pecora and Carroll demonstrated chaos
synchronization in unidirectionally coupled systems, where
one nonlinear oscillator influences the dynamics of another
but not conversely. Most chaos-based communication tech-
niques in electronic �7� and optical �8� systems, including
that used in �6�, leverage synchrony in unidirectional drive-
response systems. However, a fundamental limitation of
these schemes is that messages may be passed in only one
direction due to the clear distinction between transmitter
�drive� and receiver �response�. In this paper, we inquire into
the feasibility of bidirectional chaos communication through
a single system. Simultaneous, two-way transmission of
messages logically compels bidirectional coupling between
the communicating systems. The dynamics of each mutually
coupled oscillator are hence interdependent, promoting a po-
tential transmitter-receiver duality. However, delays in the
coupling interaction, arising from the finite speed of signal
transmission, can no longer be ignored as they are in unidi-
rectional systems. They now pose fundamental challenges to
synchronization.

When two identical nonlinear chaotic oscillators are bidi-
rectionally coupled with a time delay for the propagation of
signals between them, it is well known that they do not dis-
play stable isochronal synchrony. Any slight asymmetry be-
tween the two systems, such as different initial states or ex-
perimental noise, will prevent the isochronal solution. One

realistic possibility is that the two oscillators synchronize
instead with a time delay given by the propagation time �ach-
ronal synchrony� �9,10�, a behavior characteristic of unidi-
rectionally delay-coupled systems. However, achronal syn-
chrony in bidirectional systems is both less stable and exact,
making it nonideal for use in communication. For example,
the roles of leader and follower often switch randomly be-
tween the two oscillators �11�. Sometimes, the signal from
either system can be shifted by the time delay to reveal ap-
proximate synchrony, in which case no clear leader or fol-
lower can be defined �12�. Finally, achronal synchronization
errors are only vanishing for periodic signals.

We report here a method to achieve stable isochronal syn-
chrony between two mutually delay-coupled oscillators
through use of a third dynamical system. Isochronal syn-
chrony is important for practical purposes as it enables sym-
metric protocols in bidirectional communication and side-
steps the instabilities in delay-coupled systems discussed
above. In Ref. �13�, isochronal synchrony between two mu-
tually delay-coupled semiconductor lasers was attained by
adding to each laser self-feedback loops matched to the cou-
pling delay time �13�. Moreover, Fischer and colleagues �14�
recently studied isochronal synchrony between the outer os-
cillators in a chain of three mutually delay-coupled oscilla-
tors, extending the results of an earlier experiment where
coupling was instantaneous �15�. We implement a variation
based on generalized synchronization that combines bidirec-
tional and unidirectional coupling and is both robust and
direct. The model nonlinear system of our study is the Ikeda
ring oscillator �IRO�, a simplified representation of a ring
laser. As depicted in Fig. 1, IROs 1 and 2 are mutually
coupled to each other with delays corresponding to travel
time in passive fiber. IRO3 is unidirectionally coupled to
them both. Hence, IRO3 influences the wave forms of the
mutually coupled Ikeda oscillators, but not vice versa; in-
deed, these latter oscillators are generally synchronized to
IRO3. If no transmitted message is present, we show that
isochronal synchrony will result between IROs 1 and 2. We
have indicated schematically how independent messages
may be simultaneously encoded in the wave forms generated
by IROs 1 and 2, transmitted through the communication
channel, and recovered at the opposite oscillator.*Electronic mail: rroy@glue.umd.edu
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Abarbanel and Kennel �16� introduced the Ikeda ring os-
cillator as a basic, but characteristic model for fiber ring
lasers. Each oscillator is itself a nonlinear system with feed-
back delayed by the round-trip time �R. Reference �16� dem-
onstrated that such Ikeda systems could generate high-
dimensional wave forms and be well synchronized for
unidirectional coupling. A message wave form injected into
the transmitter could be masked and successfully recovered
at the receiver through subtraction of its input and output
signals. No propagation delay was considered in the commu-
nication channel, since the coupling was unidirectional.
There was no attempt to communicate information bidirec-
tionally between the two systems at the same time.

For a single free-running IRO, the dynamics at a fixed
point in the ring cavity are described by a discrete time map
for the complex electric field envelope E�t� and an ordinary
differential equation for the spatially averaged population in-
version w�t�.

E�t + �R� = EIe
i��I−�0�t + Bei�E�t�e��+i��w�t� �1�

dw�t�
dt

= Q − 2��w�t� + 1 + �E�t��2�eGw�t� − 1�/G� . �2�

Similarly to Ref. �16�, we choose the injected field EI=1,
detuning �I−�0=0, return coefficient B=0.8, propagation
phase change �=0.4, and gain parameters, �=0, �=6,
G=0.01. Additionally, we set the pumping Q=0 and the nor-
malized atomic decay rate �=1. Time is normalized to units
of the round-trip time �R, which we take to be unity. Hence,
oscillations are sustained by the injected field EI rather than
by conventional pump and amplification. Our parameter
choices aim to most transparently demonstrate synchrony
and communication through our coupling arrangement, not
to model exact experimental conditions. Advanced discus-
sion of the model, including experimentally accurate param-
eter values, can be found in Refs. �17–19�.

The three IRO coupling scheme of Fig. 1 is numerically
represented by substituting alternate forms E��t� for E�t� in
the governing dynamical equations. We may write

E1,2,3�t + 1� = f�E1,2,3� �t�,w1,2,3�t�� �3�

dw1,2,3�t�
dt

= g�w1,2,3�t�, �E1,2,3� �t��2� , �4�

where

E1��t� = �1 − �12 − �31�E1�t� + �21E2�t − �21� + �31E3�t�
�5�

E2��t� = �1 − �21 − �32�E2�t� + �12E1�t − �12� + �32E3�t�
�6�

E3��t� = E3�t� . �7�

For simplicity, propagation delays from the drive system
IRO3 to either of the mutually coupled IROs are ignored.
Our results hold as long as the unidirectional delays from
IRO3 are equal; that is, IRO3 symmetrically influences IROs
1 and 2. We further assume that the time delay �12 of the
signal from IRO1 into IRO2 and the delay �21 from IRO2 to
IRO1 are both equal to 3.14. These mutual coupling delays
would certainly be matched if a single communication chan-
nel connected IROs 1 and 2. We choose the mutual coupling
strengths �12=�21=0.3 ��12� and the drive coupling strengths
�31=�32=0.4 ��3�. Though the drive signal is unidirection-
ally injected, we subtract an equivalent fraction from the
self-feedback field of IROs 1 and 2 in order to match power
as �3 is varied. This maintains operation of all Ikeda oscilla-
tors in the same basin of attraction, facilitating comparisons
of their wave forms. We integrate Eqs. �3� and �4� using a
four-order Runge-Kutta routine with step size 0.02.

We show in Fig. 2�a� that the wave forms of mutually
coupled IROs 1 and 2 synchronize isochronally to each other
after unidirectional coupling with driver IRO3 is initiated at
time Td. Before Td, there is no sustained synchrony �isochro-
nal or achronal� between IROs 1 and 2. After Td, the differ-
ence between the wave forms of IROs 1 and 2 decreases
rapidly. In Fig. 2�c�, we display without time-shift a 25
round-trip zoom of the three wave forms after synchrony is
achieved. It is evident that the synchronized wave forms re-
main quite different from the driving wave form of IRO3
�see also Fig. 2�b��. In Fig. 3, we plot the isochronal cross-
correlation �ij between the intensity time traces of IROs i
and j �Ii= �Ei�2� as the strength of the drive �3 is varied,
holding constant �12=0.3. We calculate �ij, given by

�ij =

�
n

�Ii,n − 	Ii
��Ij,n − 	Ij
�

��
n

�Ii,n − 	Ii
�2�
n

�Ij,n − 	Ij
�2
, �8�

for time series of 500 round-trips after waiting 500 round-
trips for transients to decay. The subscript n for the summa-
tion refers to the time step, and 	…
 denotes the mean value
over the entire time series.

We observe isochronal synchrony between IROs 1 and 2
above a critical drive strength �3

*�0.27. As a result of the
nonzero bidirectional coupling, the driven wave forms of

FIG. 1. Scheme for isochronal synchrony. IROs 1 and 2 are
bidirectionally coupled, while IRO3 drives them both. In bidirec-
tional communication, messages 1 �m1� and 2 �m2� are injected at
IROs 1 and 2, respectively. �R denotes the ring round-trip time of
each IRO.
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IROs 1 and 2 synchronize identically to each other, but not to
the drive, even though the drive system is perfectly matched.
This is evidenced by the average correlation of the driven
wave forms to the drive signal �3= ��31+�32� /2, which in-
creases with the drive strength to a limiting value that is less
than one �complete synchrony�. For private communications,
the optimal setting of the drive strength should be just above
�3

* in order to minimize the resemblance of the carrier wave
forms to the drive wave form, yet maintain synchrony be-
tween the communicating systems.

The dynamics of our coupling scheme is in essence the
generalized synchronization �GS� �20� of a spatially distrib-
uted system �IROs 1 and 2� to the driver IRO3. The drive
signal alone, rather than the initial conditions of IROs 1 and
2, determines the long-run synchronized behavior. We em-
phasize that the significant difference here from the usual
situation in GS is that the driven “system” is actually com-
posed of mutually coupled subsystems, which identically
synchronize. In addition, this synchrony between the mutu-
ally coupled oscillators is not contingent on the dynamical
nature of the drive signal. In Fig. 4, we synchronize IROs 1
and 2 using as the drive system �a� an IRO that is highly
parameter mismatched and �b� a chaotic Rössler oscillator,
whose low dimensionality contrasts sharply with the driven
Ikeda systems.

The Rössler equations �21� used are

ẋ = 	�− y − z�

ẏ = 	�x + ay�

ż = 	�b + z�x − c�� , �9�

with a=b=0.2, c=5.7, and 	=20. The x and y components
of the generated Rössler time series are then taken to be the
real and imaginary parts, respectively, of the complex driving
wave form. The mean amplitude of this drive is scaled to be
0.5 by a constant multiplicative factor. Coupling coefficients
for Fig. 4 are �12=0.3 and �3=0.4.

Perhaps a more intuitive interpretation of our scheme
comes from comparison with the auxiliary systems approach
�22� in detecting GS. GS implies that the dynamical evolu-
tion of the mutually coupled systems depends solely on the

FIG. 2. Synchronization errors �a� �E1−E2�
between the mutually coupled oscillators and �b�
�E1−E3� between IRO1 and drive system IRO3.
When only mutual coupling is initiated at time
Tc=100, no synchronization between IROs 1 and
2 is observed. After injection of IRO3’s signal at
Td=200, IROs 1 and 2 synchronize isochronally,
but remain different from the drive. �c� A
close-up of the three wave forms after synchroni-
zation. The mean values of �E1�, �E2�, and �E3� are
offset to 2, 0, and −2, respectively.

FIG. 3. �a� The cross correlation �12 between IROs 1 and 2, and
�b� �3= ��31+�32� /2, the average cross correlation of IROs 1 and 2
to drive system IRO3, as a function of the drive coupling strength
�3, with �12=0.3 constant. Isochronal synchrony occurs above the
critical coupling strength �3

*�0.27.

FIG. 4. Time traces when the drive system IRO3 is �a� a param-
eter mismatched Ikeda oscillator ��R=1.62, EI=1.05, B=0.85, �
=0.01, �=5.5, G=0.02, �=0.8� and �b� a Rössler oscillator. In both
cases, IROs 1 and 2 maintain isochronal synchrony while adopting
qualitatively the character of the drive signal. Mean values are off-
set for display.
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drive signal; hence, it should not matter in the long run
whether we initiate first mutual coupling between IROs 1
and 2 and then coupling to the drive signal �as we do in our
simulations� or if we reverse that order. The situation of driv-
ing both IROs 1 and 2 without bidirectional coupling be-
tween them is identical to that of the auxiliary systems ap-
proach. After IROs 1 and 2 identically synchronize,
indicating GS, turning on bidirectional coupling with
matched delays will not perturb the isochronal synchrony
since the action is symmetric. However, the final GS state,
independent of the steps that establish it, now incorporates
three separate time scales: the intrinsic time scales of the
drive and response oscillators and the delay time between the
response oscillators.

With isochronal synchrony established, we show that it is
possible to communicate simultaneously in a bidirectional
fashion between IROs 1 and 2. However, straightforward
application of the unidirectional chaos modulation technique
�23� to each communicating system no longer preserves syn-
chrony. Under this first encoding process, the input fields to
the dynamical equations for IROs 1 and 2, denoted now by
E1,2� �t�, would be

E1��t� = E1��t� + m1�t� + m2�t − �21� �10�

E2��t� = E2��t� + m2�t� + m1�t − �12� , �11�

where E1,2� �t� retain their previous forms. The two additional
message terms correspond to simultaneously injecting the
transmitted message both into the transmitting ring cavity
�e.g., m1�t� in Eq. �10�� and into the coupling line, reaching
the opposite oscillator after travel to give the received mes-
sage term �e.g., m1�t−�12� in Eq. �11��. Clearly, the differ-
ence m1�t�−m2�t� will perturb the established synchrony, and
any successful decoding occurs in spite of the messages. For
bidirectional communication, we instead adapt the traditional
chaos modulation technique:

E1��t� = E1��t� + m1�t − �12� + m2�t − �21� �12�

E2��t� = E2��t� + m2�t − �21� + m1�t − �12� . �13�

We now inject the transmitted message, delayed by the
propagation time, into the transmitting ring cavity. This en-
coding process for bidirectional communication, while more
involved than that used in unidirectional systems, ensures
that the effect of the messages is symmetric, thus preserving
complete synchrony. In particular, our scheme retains the key
advantages of chaos modulation; transmitted messages may
be of arbitrary size and actively influence the dynamical evo-
lution.

Since E1�t� synchronizes identically to E2�t�, decoding �at
time t� is accomplished by subtracting the receiver’s own
cavity field, delayed by the propagation time, from the total
field received from the opposite oscillator:

�21E2�t − �21� + m2�t − �21� − �21E1�t − �21� → m2�t − �21�
�14�

�12E1�t − �12� + m1�t − �12� − �12E2�t − �12� → m1�t − �12� .

�15�

In Figs. 5�a� and 5�b�, we display the �different� decoded
digital messages in the two directions. We have chosen a
return-to-zero scheme with message size 0.1 and a bit rate of
five random bits per round trip of the Ikeda ring. The top
trace of each figure represents the near flawless decoding
under idealized assumptions of perfect parameter match be-
tween IROs 1 and 2. In the middle trace, we assume small
parameter mismatches �2%� in EI, B, �, and �. Message
fidelity deteriorates but remains error-free. We note that ad-
ditive white noise in the field equations has a similar effect
on decoding by introducing nonvanishing synchronization
errors. Finally, the bottom trace depicts the recovered mes-
sage using the conventional encoding technique of Eqs. �10�
and �11�. Decoding under this scheme, however, fails com-
pletely at higher bit rates and larger message sizes.

We have tested this scheme for producing isochronal syn-
chrony and bidirectional transmission and recovery of infor-
mation over a range of coupling coefficients and propagation
delays. In addition, bidirectional communication was equally
supported by drive sources nonidentical to the communicat-
ing systems, such as those in Fig. 4. The Ikeda model sys-
tems used here are representative of systems with an internal
time delay coupled together bidirectionally with propagation
time delays. We expect that the scheme we have developed
will hold in general for delay-coupled dynamical systems
under appropriate coupling schemes and for suitable param-
eter regimes.

In light of the recent interest in developing a public key
cryptographic system using chaotic systems �24�, we discuss
briefly the security aspect of our scheme while making no
claims of immunity against a designed attack. In many uni-
directional chaos communication techniques, the evolution
of the receiver is determined by a single signal from the
transmitter. If the drive signal is intercepted, then the attacker
would be able to reconstruct the dynamics of the intended

FIG. 5. Ten round-trip excerpts of the recovered messages �a�
m1�t� at IRO2 and �b� m2�t� at IRO1. The top trace in each figure
assumes perfect parameter match between the communicating
IROs, while in the middle trace parameters are mismatched by 2%
�EI=1.02, B=0.82, �=5.85, �=0.98 for IRO2�. The bottom trace
depicts message recovery when injection of the transmitted message
into the transmitting cavity is not delayed.
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receiver by inputting the intercepted signal into an identical
system. However, due to the degeneracy of the synchronized
solution, achieving exact parameter match over a potentially
large parameter space is extremely difficult. In our bidirec-
tional, three-oscillator scheme, the dynamics of each com-
municating system are determined by three sources rather
than one: the mediating drive signal, the received carrier sig-
nal, and the transmitted message. Reasonably, the attacker
lacks knowledge of the transmitted message. Thus, even with
an identical receiver, exact reconstruction of the decoding
wave form cannot be performed with the intercepted drive
and mutual coupling signals alone. Although in practice at-
tackers can gain significant information on the transmitted
messages with only an approximate decoding wave form, we
believe further work on our ideas may be able to minimize
this threat. Ideally, the transmitted message of each “re-
ceiver” would serve the dual function of a private encryption
key and be leveraged even when only one message is being
sent. Along the same lines, we may view the common drive
signal that mediates the synchrony between the two commu-
nicating oscillators as the public encryption key.

In summary, we have achieved isochronal synchrony be-
tween two bidirectionally, delay-coupled Ikeda ring oscilla-
tors through the symmetric injection of a unidirectional sig-
nal from an independent chaotic source. The mutually

coupled Ikeda oscillators, models for ring lasers, evolve in
generalized synchrony with the drive signal under a complex
functional relationship that incorporates multiple time scales.
We emphasize that this isochronal synchrony, unstable oth-
erwise, is essential for bidirectional information communica-
tion. A robust chaos modulation technique is implemented to
transmit independent messages simultaneously and bidirec-
tionally. This technique allows both message signals to ac-
tively influence the dynamics of the communicating systems,
sustaining rather than perturbing synchrony. We have carried
out preliminary numerical simulations to test the extension
of these ideas to larger numbers of delay-coupled oscillators
driven by a common mediator. Experiments to test these con-
cepts and results on systems of fiber ring lasers and semicon-
ductor lasers are in progress.
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